12 research outputs found

    TNF signalling drives expansion of bone marrow CD4+ T cells responsible for HSC exhaustion in experimental visceral leishmaniasis

    Get PDF
    Visceral leishmaniasis is associated with significant changes in hematological function but the mechanisms underlying these changes are largely unknown. In contrast to naïve mice, where most long-term hematopoietic stem cells (LT-HSCs; LSK CD150+ CD34- CD48- cells) in bone marrow (BM) are quiescent, we found that during Leishmania donovani infection most LT-HSCs had entered cell cycle. Loss of quiescence correlated with a reduced self-renewal capacity and functional exhaustion, as measured by serial transfer. Quiescent LT-HSCs were maintained in infected RAG2 KO mice, but lost following adoptive transfer of IFNγ-sufficient but not IFNγ-deficient CD4+ T cells. Using mixed BM chimeras, we established that IFNγ and TNF signalling pathways converge at the level of CD4+ T cells. Critically, intrinsic TNF signalling is required for the expansion and/or differentiation of pathogenic IFNγ+CD4+ T cells that promote the irreversible loss of BM function. These finding provide new insights into the pathogenic potential of CD4+ T cells that target hematopoietic function in leishmaniasis and perhaps other infectious diseases where TNF expression and BM dysfunction also occur simultaneously

    Requirement of IL-17 receptor signaling in radiation-resistant cells in the joint for full progression of destructive synovitis.

    No full text
    Contains fulltext : 47674.pdf (publisher's version ) (Closed access)IL-17 is a proinflammatory cytokine suspected to be involved in inflammatory and autoimmune diseases such as rheumatoid arthritis. In the present study, we report that IL-17R signaling is required in radiation-resistant cells in the joint for full progression of chronic synovitis and bone erosion. Repeated injections of Gram-positive bacterial cell wall fragments (streptococcal cell wall) directly into the knee joint of naive IL-17R-deficient (IL-17R-/-) mice had no effect on the acute phase of arthritis but prevented progression to chronic destructive synovitis as was noted in wild-type (wt) mice. Microarray analysis revealed significant down-regulation of leukocyte-specific chemokines, selectins, cytokines, and collagenase-3 in the synovium of IL-17R-/- mice. Bone marrow (BM) chimeric mice revealed the need for IL-17R expression on radiation-resistant joint cells for destructive inflammation. Chimeric mice of host wt and donor IL-17R-/- BM cells developed destructive synovitis in this chronic reactivated streptococcal cell wall arthritis model similar to wt-->wt chimeras. In contrast, chimeric mice of host IL-17R-/- and donor wt BM cells were protected from chronic destructive arthritis similar as IL-17R-/- -->IL-17R-/- chimeras. These data strongly indicate that IL-17R signaling in radiation-resistant cells in the joint is required for turning an acute macrophage-mediated inflammation into a chronic destructive synovitis

    Extracellular Signal-regulated Kinase Phosphorylates Tumor Necrosis Factor α-converting Enzyme at Threonine 735: A Potential Role in Regulated Shedding

    No full text
    The ectodomain of certain transmembrane proteins can be released by the action of cell surface proteases, termed secretases. Here we have investigated how mitogen-activated protein kinases (MAPKs) control the shedding of membrane proteins. We show that extracellular signal-regulated kinase (Erk) acts as an intermediate in protein kinase C-regulated TrkA cleavage. We report that the cytosolic tail of the tumor necrosis factor α-converting enzyme (TACE) is phosphorylated by Erk at threonine 735. In addition, we show that Erk and TACE associate. This association is favored by Erk activation and by the presence of threonine 735. In contrast to the Erk route, the p38 MAPK was able to stimulate TrkA cleavage in cells devoid of TACE activity, indicating that other proteases are also involved in TrkA shedding. These results demonstrate that secretases are able to discriminate between the different stimuli that trigger membrane protein ectodomain cleavage and indicate that phosphorylation by MAPKs may regulate the proteolytic function of membrane secretases
    corecore